Almost commuting elements in compact Lie groups
نویسندگان
چکیده
منابع مشابه
On Spaces of Commuting Elements in Lie Groups
The purpose of this paper is to introduce a new method of “stabilizing” spaces of homomorphisms Hom(π,G) where π is a certain choice of finitely generated group and G is a compact Lie group. The main results apply to the space of all ordered n-tuples of pairwise commuting elements in a compact Lie group G, denoted Hom(Zn, G), by assembling these spaces into a single space for all n ≥ 0. The res...
متن کاملMirror symmetry, Langlands duality, and commuting elements of Lie groups
By normalizing a component of the space of commuting pairs of elements in a reductive Lie group G, and the corresponding space for the Langlands dual group, we construct pairs of hyperkähler orbifolds which satisfy the conditions to be mirror partners in the sense of Strominger-Yau-Zaslow. The same holds true for commuting quadruples in a compact Lie group. The Hodge numbers of the mirror partn...
متن کاملCompact Lie Groups
The first half of the paper presents the basic definitions and results necessary for investigating Lie groups. The primary examples come from the matrix groups. The second half deals with representation theory of groups, particularly compact groups. The end result is the Peter-Weyl theorem.
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Memoirs of the American Mathematical Society
سال: 2002
ISSN: 0065-9266,1947-6221
DOI: 10.1090/memo/0747